

Enhanced Autonav for Mars 2020 Rover: Introduction

Olivier Toupet, Hiro Ono, Tyler del Sesto, Nat Guy, Josh vander Hook, Mike McHenry

Jet Propulsion Laboratory, California Institute of Technology

Mars 2020 Project

Mars 2020 Project

- Manual path planning is limited within the line of sight
- Up/down link: once per Sol (Martian day = 24hr40min)
- AutoNav extends drive distance per Sol beyond the line of sight
- AutoNav successfully drove on MER/MSL rovers

Why AutoNav enhancement is needed for the Mars 2020 Rover?

Mars 2020 Project

Enable autonomous driving on more complex terrain for a longer distance with increased reliability

Enhancement 1: Straddling

- Current AutoNav inflates obstacles by 2.5m (i.e., no straddling allowed)
- Enhanced AutoNav straddles rocks to traverse rock abundant area

Enhancement 2: Robustness to Slip

- Main idea: expand footprints to account for maximum possible slip
- Simplifying assumptions: 1) slip direction = local slope direction, 2)
 slip grows linearly with accumulated distance

Enhancement 3: Planning with tree

- Current AutoNav: chooses an arc (=depth-1 tree)
- Enhanced Autonav: chooses a path from a depth-4 tree (2 for arcs, 2 for turn-in-place)
- Increased complexity allows the rover to find a feasible path in a more complex terrain
- Field D* algorithm provides cost-to-go from the end of the path to the goal

Enav in Simulation (Caspian)

Mars 2020 Project

Enav test in Mars Yard

Mars 2020 Project

Using "Scarecraw" test rover

